Причины неадекватности модели могут быть следующие

Процесс построения математической модели

Процесс построения математической модели не является строго формализованным (зависит от исследователя, его опыта, таланта, опирается на определенный опытный материал (феноменологическая основа моделирования, содержит предположения, определяющую роль играет и интуиция).

В разработке моделей можно выделить три основные стадии:

построение модели;

пробная работа с моделью;

корректировка и изменение модели по результатам пробной работы.

Современное математическое моделирование немыслимо без привлечения вычислительной техники (численное моделирование, численный эксперимент).

Схематически процесс создания математической модели можно разбить на следующие этапы, отражающие степень взаимодействия человека и ЭВМ:

установление возможных форм связей (человек);

составление варианта математического моделирования (человек):

определение входных и выходных переменных;

введение допущений;

установление ограничений;

формирование математических зависимостей;

решение модельных задач (машина);

сравнение результатов решения с накопленной информацией, определение несоответствий (машина, человек);

анализ возможных причин несоответствия (человек);

составление нового варианта модели (человек).

При моделировании процессов в техносфере, как при нормальном функционировании человеко-машинных систем, так и в ЧС приходится иметь дело с их большим разнообразием и высокой сложностью, что требует знания не только наиболее общих законов, но и частных закономерностей.

К числу наиболее общих законов техносферы относятся уравнения баланса массы, законы сохранения центра масс, количества движения, момента количества движения, энергии, справедливые при определенных условиях для любых материальных тел и технологических процессов, независимо от их структуры, состояния и химического состава. Эти уравнения подтверждены огромным количеством экспериментов.

Более частные соотношения в физике и механике в частности называются физическими уравнениями или уравнениями состояния. Например, закон Гука, устанавливающий связь между механическим напряжением и деформацией упругих тел, или уравнение Клапейрона — Менделеева.

Объективная сложность процессов в техносфере делает невозможным их изучения с помощью моделей какого-либо одного типа. Моделирование таких процессов предполагает их представление в виде системы взаимодействующих разнородных компонентов. Таким образом, модель таких процессов может содержать в себе несколько разнородных субмоделей. Это накладывает свой отпечаток и на само моделирование, который удобно представить в виде определенных этапов, на которых проявляются особенности процессов в человеко-машинных системах (ЧМС). Основные этапы моделирования техносферных процессов представлены на рис. 8.

Рис. 8. Основные этапы моделирования процессов в техносфере

Этап 1. Содержательная постановка

Необходимость в новых моделях возникает при выполнении проектно-конструкторских работ, создания систем управления и контроля, а также выполнения работ на стыке различных отраслей. При этом вначале следует определить, нет ли более простых решений проблемы: возможности использовать существующие модели, модифицируя их.

Конечной целью этапа 1 служит является разработка технического задания. Для достижения этой цели необходимо решить следующие задачи:

исследовать моделируемый объект или процесс с целью выявления основных его свойств, параметров и факторов;

собрать и проверить доступные экспериментальные данные об объектах-аналогах;

проанализировать литературные источники и сравнить между собой построенные ранее модели данного объекта или ему подобные;

систематизировать и обобщить накопленный ранее материал;

разработать общий план создания и использования комплекса моделей.

На данном этапе осуществляется, таким образом, содержательная постановка задачи моделирования. При этом важно правильно поставить вопросы, на которые должна ответить модель. Для этого нужны специалисты, хорошо знающие предметную область и, вместе с тем имеющие достаточно широкий научный кругозор, чтобы общаться со специалистами в различных областях знания, в частности с заказчиком модели. Это является условием успешного формулирования таких требований к создаваемой модели, которые, с одной стороны, удовлетворят заказчика, а с другой стороны — удовлетворят ограничениям на сроки и ресурсы, выделенные для создания и реализации модели. В целом выполнение этого этапа может занять до 30% времени, отпущенного на разработку модели, а с учетом возможных уточнений — и более.

Этап 2. Концептуальная постановка

В отличие от 1-го этапа этап семантического моделирования выполняется рабочей группой без привлечения заказчика. Исходной информацией здесь являются сведения, полученные на 1-м этапе сведения о моделируемом объекте и уточненные требования к будущей модели.

При формулировке гипотез, которые должны лечь в основание концептуальной модели приходится преодолевать противоречия в преставлениях о процессах и происшествиях в человеко-машинных системах. Это касается причин возникновения ошибок, отказов, нерасчетных внешних воздействий, которые могут привести к аварии, катастрофе или несчастному случаю. Зачастую различные специалисты выдвигают разные версии развития подобных ситуаций. При моделировании аварийности и травматизма семантическая модель исследуемого явления может быть представлена в виде явления, декомпозируемого на потоки случайных событий — аварий и несчастных случаев. При этом каждое из них считается результатом совокупности других событий, образующих причинно-следственную цепь. Далее явление может быть представлено в виде схем, графов. Оформление результатов моделирования в форме причинно-следственных диаграмм явится в дальнейшем исходным материалом для последующего контроля и анализа.

Читайте также:  Что может быть причиной затрудненного дыхания у взрослых

Этап 3. Качественный анализ

Постановка задачи моделирования должна быть подвержена всесторонней проверке а затем и предварительному качественному анализу. Цель данного этапа состоит в проверке обоснованности концептуальной постановки задачи и коррекции. Это также проводится с членами рабочей группы, иногда с привлечением не входящих в нее экспертов.

Все принятые ранее гипотезы подлежат проверке, а затем предварительному (качественному) анализу. Выявляются возможные ошибки. Например, в причинно-следственных диаграммах наиболее распространенными ошибками являются избыточные или же недостающие элементы, а также излишне произвольная трактовка учитываемых событий и связей между ними.

Иногда на данном этапе моделирования уже могут быть получены те дополнительные сведения объекте-оригинале, ради которых он подвергается моделированию. Особенно часто удается это сделать в результате качественного анализа причинно-следственных диаграмм, позволяющих учесть такое количество существенных факторов, которыми невозможно одновременно манипулировать мысленно. Среди этого множества факторов (например, влияющих на вероятность аварии или травмы) на могут быть выявлены их сочетания, включающие малое число факторов, появление и/или отсутствие которых необходимо и достаточно для возникновения или недопущения конкретного нежелательного события.

Этап 4. Построение математической модели

После завершения проверки концептуальной постановки задачи и предварительного анализа соответствующей семантической модели рабочая группа приступает к построению математической модели, а затем к выбору наиболее подходящего метода ее исследования. Наиболее предпочтительной считается аналитическая постановка и такое же решение моделируемой задачи, поскольку в этом случае используется арсенал математического анализа, включая оптимизацию. Чаще всего, это системы алгебраических уравнений, для получения которых применяются различные методы аппроксимации в имеющихся статистических данных.

Особая ценность аналитического моделирования заключается в возможности точного решения поставленной задачи, в том числе нахождения оптимальных результатов. Вместе с тем, область использования аналитических методов ограничена размерностью учитываемых факторов и зависит от уровня развития соответствующих разделов математики. Поэтому для создания математических моделей сложных систем и процессов (как в техносфере, например) требуются уже алгоритмические (численные) модели, которые могут давать лишь приближенные решения.

Степень приближения результатов, например, численного и имитационного моделирования зависит от погрешностей, обусловленных преобразованием исходных математических соотношений в численные или имитационные алгоритмы, а также от ошибок округления, возникающих при выполнении любых расчетов на ЭВМ в связи с конечной точностью представления чисел в ее памяти. Вот почему основным требованием к каждом такому алгоритму служит необходимость получения решения исходной задачи за конечное число шагов с заданной точностью.

В случае применения численного метода совокупность исходных математических соотношений заменяется конечномерным аналогом, обычно получаемым в результате замены функций непрерывных аргументов на функции дискретных параметров. После такой дискретизации составляется вычислительный алгоритм, представляющий собой последовательность арифметических и логических действий, позволяющих за конечное число шагов получить решение дискретной задачи.

При имитационном моделировании дискретизации подвергаются не математические соотношения как в предыдущем случае, а сам объект исследования, который разбивается ена отдельные компоненты. Кроме того, здесь не записываетея совокупность математическихх соотношений, описывающих поведение всего обьекта-оригинала. Вместо этого обычно составляется алгоритм, моделирующий функционирование моделируемого объекта с помощью аналитических или алгоритмических моделей.

Следует заметить, что использование математической модели, построенной с применением алгоритмических методов, аналогично проведению экспериментов с объектом, только вместо натурного эксперимента с объектом проводится так называемый машинный (вычислительный) эксперимент с его моделью.

Контроль правильности математической модели. Контроль правильности математических соотношений осуществляется с помощью следующих действий:

контроль размерностей, включающий правило, согласно которому приравниваться, складываться, перемножаться и делиться могут только величины одинаковой размерности. При переходе к вычислениям добавляется дополнительное требования соблюдения одной и той же системы единиц для значений всех параметров;

проверка порядков, состоящая в сравнении порядков складываемых или вычитаемых величин и исключении из математических соотношений малозначимых параметров;

Читайте также:  Не могу подключиться к удаленному рабочему столу причины

контроль характера зависимости, предполагающий, что направление и скорость изменения выходных параметров модели должны соответствовать физическому смыслу изучаемых процессов;

проверка экстремальных ситуаций, которая заключается в наблюдении за выходными результатами модели при приближении значений ее параметров к предельно допустимым. Зачастую это делает математические соотношения более простыми и наглядными (например, при равенстве нулю какой-либо величины);

контроль физического смысла, связанный с установлением физического смысла результата и проверкой его неизменности при варьировании параметров модели от исходных до промежуточных и граничных значений;

проверка математической замкнутости, состоящая в выявлении принципиальной возможности решения системы математических соотношений и получении на ее основе однозначно интерпретируемого результата.

Математически замкнутой или «корректно поставленной» задачей принято считать такую ее постановку, при которой малым изменениям непрерывно меняющихся исходных параметров соответствуют такие же незначительные изменения выходных ее результатов.

Если это условие не удовлетворяется, численные алгоритмы не могут быть применены.

Этап 5. Разработка компьютерных программ

Использование электронно-вычислительной техники, что требует наличия соответствующих алгоритмов и компьютерных программ. Несмотря на наличие в настоящее время богатого арсенала математических алгоритмов и прикладных программ, нередко возникает потребность в самостоятельной разработке новых программ. Сам процесс создания компьютерных программ в свою очередь может быть разбит на последовательные этапы: разработка технического задания (ТЗ), проектирования структуры программ, собственно программирование (кодирование алгоритма), тестирование и отладка программ.

Само ТЗ при этом имеет следующую структуру:

название задачи — имя программы (компьютерного кода), система программирования (язык), требования к аппаратному обеспечению;

описание — содержательная и математическая постановка задачи, метод дискретизации или обработки входных данных;

управление режимами — интерфейс «пользователь-компьютер»;

входные данные — содержание параметров, пределы их изменения;

выходные данные — содержание, объем, точность и форма представления;

ошибки — возможный перечень, способы выявления и защиты;

тестовые задания — примеры, предназначенные для тестирования и отладки программного комплекса.

Общая структура компьютерного кода, как правило, содержит три части: препроцессор (подготовка и проверка исходных данных), процессор (проведение вычислений) и постпроцессор (отображение результатов.

Этап 6. Анализ и интерпретация результатов моделирования

Системное исследование предполагает качественный и количественный анализ модели и полученных результатов. Качественный анализ предназначен для выявления общих закономерностей, связанных с функционированием исследуемого объекта, осуществляется рабочей группой, иногда с привлечением представителей заказчика. Цель количественного анализа достигается решением двух задач: 1) прогнозирование характеристик моделируемого объекта; 2) априорная оценка эффективности различных стратегий его совершенствования.

Процедура количественного анализа зависит от вида полученных математических зависимостей. Для сравнительно простых аналитических выражений она может проводиться преимущественно вручную, с использованием инструментария математического анализа и принятия решений. Анализ сложных, громоздких моделей реализуется на ЭВМ с помощью численных и имитационных методов.

Проверка адекватности модели. Эта проверка проводится путем установления соответствия между результатами моделирования и какими-либо другими данными, непосредственно относящимися к решаемой задаче. Обычно используют для этого эмпирические данные (результаты натурных экспериментов, статистику), либо подобные результаты, полученные в ходе решения так называемой тестовой задачи с помощью других моделей.

Проверка адекватности должна доказать не только правомерность принятых при моделировании гипотез, но и требуемую точность моделирования.

Различают качественное и количественное согласие результатов сравнения. Качественное согласие подразумевает совпадение некоторых характерных особенностей в распределении оценочных параметров, например, их знаков, тенденций изменения, наличия экстремальных точек и т.п.

Если качественное согласие достигнуто, оценивается совпадение на количественном уровне. При этом для моделей с оценочными функциями оно может оцениваться расхождением в 10-15%, а для используемых в управляющих и контролирующих системах — в 1-2% и ниже.

Причины неадекватности модели могут быть следующие:

значения параметров модели не соответствуют области, определяемой принятой системой гипотез;

константы и параметры в определяющих соотношениях, использованных в модели, установлены неточно;

вся исходная совокупность принятых гипотез неприменима для изучаемого объекта или условий его функционирования.

Для устранения этих причин требуется проведение дополнительных исследований как модели, так и объекта-оригинала. Если модель неадекватна, следует изменить значения констант и исходных параметров. Если и при этом положительный результат не достигнут, должны быть изменены принятые гипотезы (например, о характере влияния одного параметра на другой, учет новых факторов и т.п.).

Читайте также:  Соли фосфаты в моче причины у взрослых лечение

Таким образом, последний этап в разработке математической модели исключительно важен, и пренебрежение им может стоить огромных издержек в будущем. Действительно, не всегда правдоподобный результат свидетельствует об адекватности модели, и в других случаях она будет давать качественно неверные решения.

Далее показано применение поэтапного моделирования на примере исследования аварийности и травматизма.

Источник

Причины получения неадекватных статистических математических моделей и направления действий по преобразованию их в адекватные модели.

Выпадение грубых ошибок усугубляющих неоднородность является причиной неадекватности математических моделей. Если модель неадекватна:

— уменьшить диапазон изменения факторов;

— перейти к модели второго порядка;

— преобразование данных логарифмирование.

Признаками неадекватности модели обычно являются выпадение всех членов, кроме первого.

Общая характеристика и область применения отсевающих экспериментов.

1)Отсеивающие эксперименты нужны, когда количество влияющих факторов больше 5. Для отсеивающих экспериментов наиболее целесообразно применение дробных факторных планов, если заранее можно проранжировать факторы по степени влияния, хотя бы приблизительно, тогда слабо влияющие факторы складываются с более сильно влияющими факторами, но общее количество слагаемых уравнений регрессии получается небольшим и позволяет оценить значимые и незначимые комбинации факторов. На основе анализа незначимых комбинаций отбрасывают слабо влияющие факторы.

В тех случаях, когда априорные информации для ранжирования недостаточно используют однофакторные эксперименты и выстраивают гистограмму влияния, на основе которой отсекают слабо влияющие факторы. Если возможно, нужно использовать теорию подобия и анализ размерностей.

Планирование эксперимента с разбиением факторного пространства на блоки.

Для моделирования больших областей или для моделирования явлений, слабо связанных друг с другом, в сложных объектах применяется разбиение факторного пространства на блоки с составом моделей для отдельных блоков. Общефакторное пространство разбивают на блоки, группируя их или по пространственному признаку, или по общности физических процессов и анализируя эти блоки в отдельности, потом полученные модели объединяют для оценки многофакторного пространства. Часто используют Греко-латинские квадраты.

Если экспериментатор обладает сведениями о предстоящих изменениях внешней среды, сырья аппаратуры и т.п., то целесообразно планировать эксперимент таким образом, чтобы эффект влияния внешних условий был смешан с определенным взаимодействием, которое не жалко потерять. Так при наличии двух партий сырья матрицу 23 можно разбить на 2 блока таким образом, чтобы эффект сырья сказался на величине трехфакторного взаимодействия. Тогда все линейные коэффициенты и парные взаимодействия будут освобождены от влияния неоднородности сырья.

Последовательное симплекс — планирование экспериментов.

Особый вид планов последовательного типа, которые проводятся без предварительных таблиц изменения факторов — симплекс-планирования.

Симплекс планированиеэто постепенное движение по градиенту с отбрасыванием значения функции или наибольшего значения, или наименьшего. Для этого используется в n-мерном пространстве n-мерный треугольник.       

Их используют только для поиска экстремума. Принцип: после проведения экспериментов по первому плану достроить план в направлении возрастания или убывания функции.

Идея – максимальное использование уже имеющихся результатов для планирования нового эксперимента на каждом шаге. Функцию отклика при этом не определяют, а ищут экстремум. При достижении экстремума симплекс начинает вращаться или совершать колебательные движения. Если градиенты функции малы, соизмеримы с погрешностью измерения, необходимо проведение повторных опытов.

Статистически обоснованное построение эмпирических математических зависимостей по группе экспериментально измеренных значений.

Процесс подбора эмпирических формул состоит из двух этапов. На первом этапе данные измерений наносят на сетку прямоугольных координат, соединяют экспериментальные точки плавной кривой и выбирают ориентировочно вид формулы. На втором этапе вычисляют параметры формул, которые наилучшим образом соответствовали бы принятой формуле. Подбор эмпирических формул необходимо начинать с самых простых выражений.

Кривые, построенные по экспериментальным точкам, выравнивают известными в статистике методами. Например, методом выравнивания, который заключается в том, что кривую, построенную по экспериментальным точкам, представляют линейной функцией. Для нахождения параметров заданных уравнений часто применяют метод средних и метод наименьших квадратов.

Проверка экспериментальных данных на адекватность необходима также во всех случаях на стадии анализа теоретико-экспериментальных исследований.

Методы оценки адекватности основаны на использовании доверительных интервалов, позволяющих с заданной доверительной вероятностью определять искомые значения оцениваемого параметра. Суть такой проверки состоит в сопоставлении полученной или предполагаемой теоретической функции у = / (х) с результатами измерений.

Источник