Может служить причиной возникновения механической волны

Механические волны

Многие колебательные процессы в Природе сопровождаются распространением волн. Рассмотрим подробнее особенности одного из видов волн — механических.

Может служить причиной возникновения механической волны

Механическая волна и ее возникновение

Механическая волна — это процесс распространения возмущений в материальной среде (чаще всего в каком-то веществе).

Для возникновения волны необходимо начальное воздействие, при котором колебания (свободные или вынужденные) возникают только в одной или нескольких «начальных» материальных точках среды.

В материальной среде все точки связаны друг с другом, поэтому колебательные движения начальных точек будут влиять на соседние точки, и воздействие будет периодическим, в соответствии с исходными колебаниями. В результате и соседние точки также придут в колебательное движение.

Далее, соседние точки начнут воздействовать (и опять, периодически) на более дальних соседей, и так колебательное воздействие будет распространяться по всем точкам среды. А поскольку воздействие распространяется с какой-то задержкой, то в среде будут точки, которые только начнут движение «вперед», в то время, как начальная точка уже может двигаться «назад», то есть, колебательный процесс «отрывается» от его источника, и распространяется в среде.

Такой процесс называется «волной».

Волны и их распространение

Рис. 1. Волны и их распространение.

Условия распространения волн

Из описания процесса возникновения волны можно вывести условия, необходимые для ее возникновения. Это:

  • Наличие источника колебаний.
  • Наличие упругой среды без разрывов.

Источник колебаний может быть как внешним (воздействие со стороны тела, не связанного со средой), так и внутренним (изменения упругих свойств самой среды за счет изменения внутренней энергии).

Упругость среды обеспечивает «связь» соседних точек среды. Именно за счет сил упругости колебательный процесс одних точек передается соседним точкам. Отсутствие разрывов также важное условие — в месте разрыва невозможна передача воздействия, волна здесь распространяться не будет.

Условия распространения волн

Рис. 2. Условия распространения волн.

Виды и характеристики механических волн

Механические волны делятся на два вида — продольные и поперечные, в зависимости от ориентации колебаний отдельных частиц. Так, колебания частиц воды при возникновении волн возникают в вертикальной плоскости. При этом волна распространяется горизонтально. Такая волна называется поперечной. Продольная волна — это, например, волна колебаний в длинной пружине. Если одна часть пружины совершает частые мелкие колебания, то эти колебания доходят до другой части в результате волнового процесса, который будет продольным. Продольными также являются звуковые волны. Звук — это распространяющиеся продольные уплотнения воздуха или другой среды.

Может служить причиной возникновения механической волны

Рис. 3. Продольные и поперечные волны.

Формула механических волн может быть достаточно сложной, однако, волна любого вида может быть представлена в виде бесконечной суммы простейших волн, описываемых законом синуса, называемых гармоническими:

$$x=Asin(omega t+varphi)$$

Характеристики гармонической волны включают параметр $A$ — амплитуду, параметр $omega$ — частоту параметр $varphi$ — фазу.

Что мы узнали?

Механические волны — это процесс распространения возмущений в материальной среде. Механические волны бывает продольными и поперечными. Любая волна может быть представлена в виде суммы простейших гармонических составляющих.

Тест по теме

Доска почёта

Чтобы попасть сюда — пройдите тест.

Пока никого нет. Будьте первым!

Оценка доклада

Средняя оценка: 4.6. Всего получено оценок: 217.

Источник

Механические волны

Если в каком-нибудь месте твердой, жидкой или газообразной среды возбуждены колебания частиц, то вследствие взаимодействия атомов и молекул среды колебания начинают передаваться от одной точки к другой с конечной скоростью. Процесс распространения колебаний в среде называется волной.

Механические волны бывают разных видов. Если в волне частицы среды испытывают смещение в направлении, перпендикулярном направлению распространения, то волна называется поперечной. Примером волны такого рода могут служить волны, бегущие по натянутому резиновому жгуту (рис. 2.6.1) или по струне.

Если смещение частиц среды происходит в направлении распространения волны, то волна называется продольной. Волны в упругом стержне (рис. 2.6.2) или звуковые волны в газе являются примерами таких волн.

Волны на поверхности жидкости имеют как поперечную, так и продольную компоненты.

Как в поперечных, так и в продольных волнах переноса вещества в направлении распространения волны не происходит. В процессе распространения частицы среды лишь совершают колебания около положений равновесия. Однако волны переносят энергию колебаний от одной точки среды к другой.

Может служить причиной возникновения механической волны

Рисунок 2.6.1.

Распространение поперечного волнового импульса по натянутому резиновому жгуту

Может служить причиной возникновения механической волны

Рисунок 2.6.2.

Распространение продольного волнового импульса по упругому стержню

Характерной особенностью механических волн является то, что они распространяются в материальных средах (твердых, жидких или газообразных). Существуют волны, которые способны распространяться и в пустоте (например, световые волны). Для механических волн обязательно нужна среда, обладающая способностью запасать кинетическую и потенциальную энергию. Следовательно, среда должна обладать инертными и упругими свойствами. В реальных средах эти свойства распределены по всему объему. Так, например, любой малый элемент твердого тела обладает массой и упругостью. В простейшей одномерной модели твердое тело можно представить как совокупность шариков и пружинок (рис. 2.6.3).

Может служить причиной возникновения механической волны

Рисунок 2.6.3.

Простейшая одномерная модель твердого тела

В этой модели инертные и упругие свойства разделены. Шарики обладают массой m, а пружинки — жесткостью k. С помощью такой простой модели можно описать распространение продольных и поперечных волн в твердом теле. В продольных волнах шарики испытывают смещения вдоль цепочки, а пружинки растягиваются или сжимаются. Такая деформация называется деформацией растяжения или сжатия. В жидкостях или газах деформация такого рода сопровождается уплотнением или разрежением.

Продольные механические волны могут распространяться в любых средах — твердых, жидких и газообразных.

Продольные волны — это периодические сгущения и разрежения среды. Поэтому такие волны могут существовать в любых телах — твердых, жидких, газообразных. Поперечные волны могут существовать лишь в твердых телах. Это объясняется тем, что для распространения такой волны необходимо «жесткое» расположение частиц среды, чтобы между ними могли возникать силы упругости.

Если в одномерной модели твердого тела один или несколько шариков сместить в направлении, перпендикулярном цепочке, то возникнет деформация сдвига. Деформированные при таком смещении пружины будут стремиться возвратить смещенные частицы в положение равновесия. При этом на ближайшие несмещенные частицы будут действовать упругие силы, стремящиеся отклонить их от положения равновесия. В результате вдоль цепочки побежит поперечная волна.

Читайте также:  Что может быть причиной отека глаза

В жидкостях и газах упругая деформация сдвига не возникает. Если один слой жидкости или газа сместить на некоторое расстояние относительно соседнего слоя, то никаких касательных сил на границе между слоями не появится. Силы, действующие на границе жидкости и твердого тела, а также силы между соседними слоями жидкости всегда направлены по нормали к границе — это силы давления. То же относится к газообразной среде. Следовательно, поперечные волны не могут существовать в жидкой или газообразной средах.

Значительный интерес для практики представляют простые гармонические или синусоидальные волны. Они характеризуются амплитудой A колебания частиц, частотой f и длиной волны λ. Синусоидальные волны распространяются в однородных средах с некоторой постоянной скоростью υ.

Смещение y (x, t) частиц среды из положения равновесия в синусоидальной волне зависит от координаты x на оси OX, вдоль которой распространяется волна, и от времени t по закону:

— так называемое волновое число, ω = 2πf — круговая частота.

На рис. 2.6.4 изображены «моментальные фотографии» поперечной волны в два момента времени: t и t + Δt. За время Δt волна переместилась вдоль оси OX на расстояние υΔt. Такие волны принято называть бегущими (в отличие от стоячих волн, см. далее).

Может служить причиной возникновения механической волны

Рисунок 2.6.4.

«Моментальные фотографии» бегущей синусоидальной волны в момент времени t и t + Δt

Длиной волны λ называют расстояние между двумя соседними точками на оси OX, колеблющимися в одинаковых фазах. Расстояние, равное длине волны λ, волна пробегает за период Т, следовательно, λ = υT, где υ — скорость распространения волны.

Для любой выбранной точки на графике волнового процесса (например, для точки A на рис. 2.6.4) с течением времени t изменяется координата x этой точки, а значение выражения ωt — kx не изменяется. Через промежуток времени Δt точка A переместится по оси OX на некоторое расстояние Δx = υΔt. Следовательно:

ωt — kx = ω(t + Δt) — k(x + Δx) = const или ωΔt = kΔx.

Отсюда следует:

Таким образом, бегущая синусоидальная волна обладает двойной периодичностью — во времени и пространстве. Временной период равен периоду колебаний T частиц среды, пространственный период равен длине волны λ. Волновое число является пространственным аналогом круговой частоты

Обратим внимание на то, что уравнение

y (x, t) = A cos (ωt + kx)

описывает синусоидальную волну, распространяющуюся в направлении, противоположном направлению оси OX, со скоростью .

В бегущей синусоидальной волне каждая частица среды совершает гармонические колебания с некоторой частотой ω. Поэтому, как и в случае простого колебательного процесса, средняя потенциальная энергия, запасенная в некотором объеме среды, равна средней кинетической энергии в том же объеме и пропорциональна квадрату амплитуды колебаний.

Отсюда следует, что при распространении бегущей волны возникает поток энергии, пропорциональный скорости волны и квадрату ее амплитуды.

Бегущие волны распространяются в средах с определенными скоростями, зависящими от типа волны, а также от инертных и упругих свойств среды.

Скорость поперечных волн в натянутой струне или резиновом жгуте зависит от погонной массы μ (т. е. массы единицы длины) и силы натяжения T:

Скорость распространения продольных волн в безграничной среде определяется плотностью среды ρ (т. е. массой единицы объема) и модулем всестороннего сжатия B, который равен коэффициенту пропорциональности между изменением давления Δp и относительным изменением объема ΔV / V, взятому с обратным знаком:

Выражение для скорости распространения продольных волн в безграничных средах имеет вид

Например, при температуре 20 °С скорость распространения продольных волн в воде υ ≈ 1480 м/с, в различных сортах стали υ ≈ 5-6 км/с.

При распространении продольных волн в упругих стержнях в формулу для скорости волн вместо модуля всестороннего сжатия B входит модуль Юнга E :

Для стали отличие E от B невелико, для других материалов оно может составлять 20-30 % и даже больше.

Если механическая волна, распространяющаяся в среде, встречает на своем пути какое-либо препятствие, то она может резко изменить характер своего поведения. Например, на границе раздела двух сред с разными механическими свойствами волна частично отражается, а частично проникает во вторую среду. Волна, бегущая по резиновому жгуту или струне отражается от неподвижно закрепленного конца; при этом появляется волна, бегущая во встречном направлении. В струне, закрепленной на обоих концах, возникают сложные колебания, которые можно рассматривать как результат наложения (суперпозиции) двух волн, распространяющихся в противоположных направлениях и испытывающих отражения и переотражения на концах. Колебания струн, закрепленных на обоих концах, создают звуки всех струнных музыкальных инструментов. Очень похожее явление возникает при звучании духовых инструментов, в том числе органных труб.

Если волны, бегущие по струне во встречных направлениях, имеют синусоидальную форму, то при определенных условиях они могут образовать стоячую волну.

Пусть струна длины l закреплена так, что один из ее концов находится в точке x = 0, а другой — в точке x1 = L (рис. 2.6.5). В струне создано натяжение T.

Может служить причиной возникновения механической волны

Рисунок 2.6.5.

Образование стоячей волны в струне, закрепленной на обоих концах

По струне одновременно распространяются в противоположных направлениях две волны одной и той же частоты:

• y1 (x, t) = A cos (ωt + kx) — волна, бегущая справа налево;

• y2 (x, t) = -A cos (ωt — kx) — волна, бегущая слева направо.

В точке x = 0 (один из закрепленных концов струны) падающая волна y1 в результате отражения порождает волну y2. При отражении от неподвижно закрепленного конца отраженная волна оказывается в противофазе с падающей. Согласно принципу суперпозиции, который является экспериментальным фактом, колебания, вызванные встречными волнами в каждой точке струны, складываются. Таким образом, результирующее колебание в каждой точке равно сумме колебаний, вызванных волнами y1 и y2 в отдельности. Следовательно,

y = y1 (x, t) + y2 (x, t) = (-2A sin ωt) sin kx.

Это и есть стоячая волна. В стоячей волне существуют неподвижные точки, которые называются узлами. Посередине между узлами находятся точки, которые колеблются с максимальной амплитудой. Эти точки называются пучностями.

Читайте также:  Красный цвет мочи у мужчин причины и лечение

Оба неподвижных конца струны должны быть узлами. Приведенная выше формула удовлетворяет этому условию на левом конце (x = 0). Для выполнения этого условия и на правом конце (x = L), необходимо чтобы kL = nπ, где n — любое целое число. Это означает, что стоячая волна в струне возникает не всегда, а только в том случае, если длина L струны равняется целому числу длин полуволн:

Набору значений λn длин волн соответствует набор возможных частот fn:

где — скорость распространения поперечных волн по струне. Каждая из частот и связанный с ней тип колебания струны называется нормальной модой. Наименьшая частота f1 называется основной частотой, все остальные (f2, f3, …) называются гармониками. На рис. 2.6.5 изображена нормальная мода для n = 2.

В стоячей волне нет потока энергии. Колебательная энергия, заключенная в отрезке струны между двумя соседними узлами, не транспортируется в другие части струны. В каждом таком отрезке происходит периодическое (дважды за период T) превращение кинетической энергии в потенциальную и обратно как в обычной колебательной системе. Но в отличие от груза на пружине или маятника, у которых имеется единственная собственная частота

струна обладает бесконечным числом собственных (резонансных) частот fn. На рис. 2.6.6 изображены несколько типов стоячих волн в струне, закрепленной на обоих концах.

Может служить причиной возникновения механической волны

Рисунок 2.6.6.

Первые пять нормальных мод колебаний струны, закрепленной на обоих концах

В соответствии с принципом суперпозиции стоячие волны различных типов (т. е. с разными значениями n) могут одновременно присутствовать в колебаниях струны.

Еще статьи в этой категории:

  • Эффект Доплера
  • Звук

Источник

mozok.click

В курсе физики 7 класса вы изучали механические колебания. Часто бывает так, что, возникнув в одном месте, колебания распространяются в соседние области пространства. Вспомните, например, распространение колебаний от брошенного в воду камешка или колебания земной коры, распространяющиеся от эпицентра землетрясения. В таких случаях говорят о волновом движении — волнах (рис. 17.1). Из этого параграфа вы узнаете об особенностях волнового движения.

Может служить причиной возникновения механической волны

Создаем механические волны

Возьмем довольно длинную веревку, один конец которой прикрепим к вертикальной поверхности, а второй будем двигать вниз-вверх (колебать). Колебания от руки распространятся по веревке, постепенно вовлекая в колебательное движение все более удаленные точки, — по веревке побежит механическая волна (рис. 17.2).

Может служить причиной возникновения механической волны

Механической волной называют распространение колебаний в упругой среде*.

Теперь закрепим горизонтально длинную мягкую пружину и нанесем по ее свободному концу серию последовательных ударов — в пружине побежит волна, состоящая из сгущений и разрежений витков пружины (рис. 17.3).

Описанные выше волны можно увидеть, однако большинство механических волн невидимы, например звуковые волны (рис. 17.4).

На первый взгляд, все механические волны абсолютно разные, но причины их возникновения и распространения одинаковы.

Выясняем, как и почему в среде распространяется механическая волна

Любая механическая волна создается колеблющимся телом — источником волны. Осуществляя колебательное движение, источник волны деформирует ближайшие к нему слои среды (сжимает и растягивает их либо смещает). В результате возникают силы упругости, которые действуют на соседние слои среды и заставляют их осуществлять вынужденные колебания. Эти слои, в свою очередь, деформируют следующие слои и заставляют их колебаться. Постепенно, один за другим, все слои среды вовлекаются в колебательное движение — в среде распространяется механическая волна.

Может служить причиной возникновения механической волны

Рис. 17.6. В продольной волне слои среды колеблются вдоль направления распространения волны

Различаем поперечные и продольные механические волны

Сравним распространение волны вдоль веревки (см. рис. 17.2) и в пружине (см. рис. 17.3).

Отдельные части веревки движутся (колеблются) перпендикулярно направлению распространения волны (на рис. 17.2 волна распространяется справа налево, а части веревки движутся вниз-вверх). Такие волны называют поперечными (рис. 17.5). При распространении поперечных волн происходит смещение одних слоев среды относительно других. Деформация смещения сопровождается возникновением сил упругости только в твердых телах, поэтому поперечные волны не могут распространяться в жидкостях и газах. Итак, поперечные волны распространяются только в твердых телах.

При распространении волны в пружине витки пружины движутся (колеблются) вдоль направления распространения волны. Такие волны называют продольными (рис. 17.6). Когда распространяется продольная волна, в среде происходят деформации сжатия и растяжения (вдоль направления распространения волны плотность среды то увеличивается, то уменьшается). Такие деформации в любой среде сопровождаются возникновением сил упругости. Поэтому продольные волны распространяются и в твердых телах, и в жидкостях, и в газах.

Волны на поверхности жидкости не являются ни продольными, ни поперечными. Они имеют сложный продольно-поперечный характер, при этом частицы жидкости движутся по эллипсам. В этом легко убедиться, если бросить в море легкую щепку и понаблюдать за ее движением на поверхности воды.

Выясняем основные свойства волн

Может служить причиной возникновения механической волны

1. Колебательное движение от одной точки среды к другой передается не мгновенно, а с некоторым опозданием, поэтому волны распространяются в среде с конечной скоростью.

2. Источник механических волн — колеблющееся тело. При распространении волны колебания частей среды — вынужденные, поэтому частота колебаний каждой части среды равна частоте колебаний источника волны.

3. Механические волны не могут распространяться в вакууме.

4. Волновое движение не сопровождается переносом вещества — части среды всего лишь колеблются относительно положений равновесия.

5. С приходом волны части среды приходят в движение (приобретают кинетическую энергию). Это означает, что при распространении волны происходит перенос энергии.

Перенос энергии без переноса вещества — важнейшее свойство любой волны.

Вспомните распространение волн по поверхности воды (рис. 17.7). Какие наблюдения подтверждают основные свойства волнового движения?

Вспоминаем физические величины, характеризующие колебания

Волна — это распространение колебаний, поэтому физические величины, характеризующие колебания (частота, период, амплитуда), также характеризуют и волну. Итак, вспомним материал 7 класса:

Физические величины, характеризующие колебания

Частота колебаний ν

Период колебаний T

Амплитуда колебаний A

Определе

ние

количество колебаний за единицу времени

время одного колебания

максимальное расстояние, на которое отклоняется точка от положения равновесия

Формула для определения

N — количество колебаний за интервал времени t

Единица в СИ

секунда (с)

метр (м)

Читайте также:  Какая причина может быть если ты ушел с папы

Обратите внимание! При распространении механической волны все части среды, в которой распространяется волна, колеблются с одинаковой частотой (ν), которая равна частоте колебаний источника волны, поэтому период

колебаний (T) для всех точек среды тоже одинаков, ведь

А вот амплитуда колебаний постепенно уменьшается с отдалением от источника волны.

Выясняем длину и скорость распространения волны

Вспомните распространение волны вдоль веревки. Пусть конец веревки осуществил одно полное колебание, то есть время распространения волны равно одному периоду (t = T). За это время волна распространилась на некоторое расстояние λ (рис. 17.8, а). Это расстояние называют длиной волны.

Длина волны λ — расстояние, на которое распространяется волна за время, равное периоду T:

где v — скорость распространения волны. Единица длины волны в СИ — метр:

Нетрудно заметить, что точки веревки, расположенные друг от друга на расстоянии одной длины волны, колеблются синхронно — имеют одинаковую фазу колебаний (рис. 17.8, б, в). Например, точки A и B веревки одновременно движутся вверх, одновременно достигают гребня волны, затем одновременно начинают двигаться вниз и т. д.

Может служить причиной возникновения механической волны

Рис. 17.8. Длина волны равна расстоянию, на которое распространяется волна за время одного колебания (это также расстояние между двумя ближайшими гребнями или двумя ближайшими впадинами)

Воспользовавшись формулой λ = vT, можно определить скорость распространения

получим формулу взаимосвязи длины, частоты и скорости распространения волны — формулу волны:

волны:

Если волна переходит из одной среды в другую, скорость ее распространения изменяется, а частота остается неизменной, поскольку частота определяется источником волны. Таким образом, согласно формуле v = λν при переходе волны из одной среды в другую длина волны изменяется.

Формула волны

Учимся решать задачи

Задача. Поперечная волна распространяется вдоль шнура со скоростью 3 м/с. На рис. 1 показано положение шнура в некоторый момент времени и направление распространения волны. Считая, что сторона клетки равна 15 см, определите:

1) амплитуду, период, частоту и длину волны;

2) направление, в котором в данный момент времени движутся точки K, В и С шнура.

Анализ физической проблемы, решение

Волна поперечная, поэтому точки шнура колеблются перпендикулярно направлению распространения волны (смещаются вниз-вверх относительно некоторых положений равновесия).

1) Из рис. 1 видим, что максимальное отклонение от положения равновесия (амплитуда A волны) равно 2 клеткам. Значит, A = 2 15 см = 30см.

Расстояние между гребнем и впадиной — 60 см (4 клетки), соответственно расстояние между двумя ближайшими гребнями (длина волны) вдвое больше. Значит, λ = 2 · 60 см = 120 см = 1,2м.

Частоту ν и период T волны найдем, воспользовавшись формулой волны:

2) Чтобы выяснить направление движения точек шнура, выполним дополнительное построение. Пусть за небольшой интервал времени Δt волна сместилась на некоторое небольшое расстояние. Поскольку волна смещается вправо, а ее форма со временем не изменяется, точки шнура займут положение, показанное на рис. 2 пунктиром.

Волна поперечная, то есть точки шнура движутся перпендикулярно направлению распространения волны. Из рис. 2 видим, что точка K через интервал времени Δt окажется ниже своего начального положения, следовательно, скорость ее движения направлена вниз; точка В переместится выше, следовательно, скорость ее движения направлена вверх; точка С переместится ниже, следовательно, скорость ее движения направлена вниз.

Ответ: A = 30 см; T = 0,4 с; ν = 2,5 Гц; λ = 1,2 м; K и С — вниз, В — вверх.

Подводим итоги

Распространение колебаний в упругой среде называют механической волной. Механическую волну, в которой части среды колеблются перпендикулярно направлению распространения волны, называют поперечной; волну, в которой части среды колеблются вдоль направления распространения волны, называют продольной.

Волна распространяется в пространстве не мгновенно, а с некоторой скоростью. При распространении волны происходит перенос энергии без переноса вещества. Расстояние, на которое распространяется волна за время, равное периоду, называют длиной волны — это расстояние между двумя ближайшими точками, которые колеблются синхронно (имеют одинаковую фазу колебаний). Длина λ, частота ν и скорость v распространения волны связаны формулой волны: v = λν.

Контрольные вопросы

1. Дайте определение механической волны. 2. Опишите механизм образования и распространения механической волны. 3. Назовите основные свойства волнового движения. 4. Какие волны называют продольными? поперечными? В каких средах они распространяются? 5. Что такое длина волны? Как ее определяют? 6. Как связаны длина, частота и скорость распространения волны?

Упражнение № 17

1. Определите длину каждой волны на рис. 1.

2. В океане длина волны достигает 270 м, а ее период равен 13,5 с. Определите скорость распространения такой волны.

3. Совпадают ли скорость распространения волны и скорость движения точек среды, в которой распространяется волна?

4. Почему механическая волна не распространяется в вакууме?

5. В результате взрыва, произведенного геологами, в земной коре распространилась волна со скоростью 4,5 км/с. Отраженная от глубоких слоев Земли, волна была зафиксирована на поверхности Земли через 20 с после взрыва. На какой глубине залегает порода, плотность которой резко отличается от плотности земной коры?

6. На рис. 2 изображены две веревки, вдоль которых распространяется поперечная волна. На каждой веревке показано направление колебаний одной из ее точек. Определите направления распространения волн.

7. На рис. 3 изображено положение двух шнуров, вдоль которых распространяется волна, показано направление распространения каждой волны. Для каждого случая а и б определите: 1) амплитуду, период, длину волны; 2) направление, в котором в данный момент времени движутся точки А, В и С шнура; 3) количество колебаний, которые совершает любая точка шнура за 30 с. Считайте, что сторона клетки равна 20 см.

8. Человек, стоящий на берегу моря, определил, что расстояние между соседними гребнями волн равно 15 м. Кроме того, он подсчитал, что за 75 с до берега доходит 16 волновых гребней. Определите скорость распространения волн.

Может служить причиной возникновения механической волны

Это материал учебника Физика 9 класс Барьяхтар, Довгий

Источник